半导体制冷片厂家
 
 
行业新闻 制冷技术 公司新闻 半导体技术
锂离子动力电池热管理系统-锂电池热管理概念股
来源:本站 时间:2024-06-04
谁“冻”了我的电池?浅谈新能源汽车电池热管理系统

[资讯-牛车网]

说到纯电动汽车,最大的问题大概就是续航里程了吧。在北方开新能源电动车的朋友都知道,一到冬天续航里程就会大幅降低。造成不敢开空调制热,只能在车厢里忍受严寒而瑟瑟发抖。直接导致对新能源汽车的体验极差。想要解决这个问题,我们就得依赖电池管理系统。今天小编就跟大家聊一聊这个话题。

什么是电池管理系统

电池管理系统的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。

热管理系统的重要性

电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。

电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:

1、在电池温度较高时进行有效散热,防止产生热失控事故;

2、在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;

3、减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。

电池包(PACK)内的温度环境对电芯的可靠性、寿命及性能都有很大的影响,因此,使PACK内温度维持的一定的温度范围区间内就显示尤其重要。这主要是通过冷却与加热来实现,其冷却方式主要分为三类:

1、 风冷:风冷是以低温空气为介质,利用热的对流,降低电池温度的一种散热方式,分为自然冷却和强制冷却(利用风机等)。该技术利用自然风或风机,配合汽车自带的蒸发器为电池降温,系统结构简单、便于维护,在早期的电动乘用车应用广泛,如日产聆风(Nissan Leaf)、起亚Soul EV等,在目前的电动巴士、电动物流车中也被广泛采纳。

2、 液冷:液体冷却技术通过液体对流换热,将电池产生的热量带走,降低电池温度。液体介质的换热系数高、热容量大、冷却速度快,对降低最高温度、提升电池组温度场一致性的效果显著,同时,热管理系统的体积也相对较小。液冷系统形式较为灵活: 可将电池单体或模块沉浸在液体中,也可在电池模块间设置冷却通道,或在电池底部采用冷却板。电池与液体直接接触时,液体必须保证绝缘( 如矿物油) ,避免短路。同时,对液冷系统的气密性要求也较高。此外,就是机械强度,耐振动性,以及寿命要求。 液冷是目前许多电动乘用车的优选方案,国内外的典型产品如宝马i3、特斯拉、通用沃蓝达、吉利帝豪EV。

3、 直冷:直冷(制冷剂直接冷却):利用制冷剂(R134a等)蒸发潜热的原理,在整车或电池系统中建立空调系统,将空调系统的蒸发器安装在电池系统中,制冷剂在蒸发器中蒸发并快速高效地将电池系统的热量带走,从完成对电池系统冷却的作业。目前通过直冷的冷却方式基本在电动乘用车上,最典型的如BMW i3(i3有液冷、直冷两种冷却方案)。

写在最后

纯电动汽车中电池的温度直接影响了电池的安全性,因此电池的热管理系统是我们最应该关注的环节。这也将成为未来电动车优化的重点之一。

一种用于锂离子电池组热管理的液体冷却系统

来源 | Thermal Science and Engineering Progress

原文 | https://doi.org/10.1016/j.tsep.2023.101857

01

背景介绍

近年来,由于对化石燃料消耗和尾气碳排放的日益关注,电动汽车的发展速度显著加快。锂离子电池因其能量密度高、自放电率低、维护要求低、循环寿命长、重量轻、结构紧凑等特点,是目前电动汽车使用最广泛的电源。然而,锂离子电池的性能受工作温度的影响很大。锂离子电池理想的工作温度范围为25 ~ 40℃,不同电池之间的最高温差小于5℃。在低温或高温环境下工作都会导致电池性能下降,寿命缩短,甚至热失控。因此,一个优秀的电池热管理系统(BTMS)对于保证锂离子电池安全高效的运行状态是非常必要的。

根据冷却策略的不同,BTMS可分为被动冷却系统、主动冷却系统和被动与主动相结合的混合系统。在被动冷却系统中,没有任何额外的功耗,但它们也不能控制冷却系统来改变冷却速率。在锂离子电池表面实施特殊的材料或散热结构,以实现电池与外部环境之间的高传热能力。典型的例子包括自然空气对流,相变材料(PCM)和热管。

被动空气冷却的冷却能力很低,不适合冷却高能量密度的锂离子电池。PCM在融冻过程中能够储存和释放大量的能量,近年来受到越来越多的关注。将PCM装入BTMS的主要优点是可以实现良好的电池温度均匀性和灵活的几何形状。然而,PCM的低导热性阻碍了电池的散热速率,在高速率充放电条件下存在严重的隐患。因此开发出具有优异的散热性能的新能源电车的电池热管理系统是非常重要的。

02

成果掠影

近期,哈尔滨工业大学冯宇教授团队针对液冷电池热管理系统(BTMS)取得新进展。由于常见的线性流道结构导致了严重的温度分布不均匀。该团队提出了一种具有多通道的新型锥形通道散热器,以提高电池温度均匀性,降低BTMS的功耗。团队分析比较了8种不同设计的电池最高温度和温差、温度不均分布参数和功耗性能,同时,分析了延迟冷却策略对液冷系统温度均匀性的影响。结果表明,采用锥形通道散热器结构可以改善BTMS的冷却性能,而增加通道数可以改善热性能,但代价是增加功耗。三道通道的锥形流形结构具有最佳的冷却性能,在电池温度和温差限制内,其功耗比基础降低了86.3%。此外,延迟冷却方案对BTM并不是一个很好的策略,因为它会在很短的时间内积累较大的温差。这些结果对先进的液冷BTMS的设计具有重要意义。研究成果以“A manifold channel liquid cooling system with low-cost and high temperature uniformity for lithium-ion battery pack thermal management”为题发表于《Thermal Science and Engineering Progress》。

03

图文导读

图1.带流形通道散热器的BTMS的原理图。

表1.电池、冷却剂和材料的热物理特性。

图2.仿真电池组的几何模型,(a)矩形流形结构,(b)锥形流形结构。

图3.具有四个通道的锥型通道示意图。

图4. 基本模组示意图。

图5.仿真结果与实验数据比较:(a)电池平均温度,(b)流形微通道散热器的热性能。

图6.(a)电池体积平均温度,(b)通道流速的分布。

图7.(a)电池最高温度,(b)电池最高温差,(c)电池温度不均分布。

图8. 不同通道的热力学性能。

图9.矩形和锥形结构的电池体积平均温度和速度的比较。

图10.电池的性能对比。

END

★ 平台声明

部分素材源自网络,版权归原作者所有。分享目的仅为行业信息传递与交流,不代表本公众号立场和证实其真实性与否。如有不适,请联系我们及时处理。欢迎参与投稿分享!

 

联系我们


微信手机同号:18038109954
库尔能源制冷片总部:深圳市宝安区西乡街道名优采购中心B座B210。联系电话:18038109954 胡总监 (TEC制冷片厂家) 粤ICP备2024213474号 XML地图 半导体制冷片厂家