半导体制冷片厂家
 
 
行业新闻 制冷技术 公司新闻 半导体技术
电车汽车热管理系统原理(电动汽车热管理技术)
来源:本站 时间:2024-05-23
带你了解一下新能源车热管理系统与续航

在对新能源车纷纷“真香”的同时

续航也成了大家关注的问题

众所周知,续航和电池有直接关系

今天,M博就带你打开新世界——

新能源车续航还和热管理有关

01

热管理系统是什么?

从核心来讲,热管理就是

统筹调配电机、电池、座舱间的制热或制冷需求

让车内的温度稳定在设定的范围之内

带来舒适的驾乘体验

同时保障电池安全以及维护续航

俗话说得好,不会带团队你就只能干到死

所以,为了达到控制效果

热管理系统也是打的团队牌

团队到位,分工干活

02

热管理和续航有什么关系?

新能源车并不像传统汽车那样

有内燃机发动机产生的热量

所以电池不仅是动力来源

还要为开空调这事儿买单

特别是在冬天

电池特性导致能提供的能量会降低

再加上开空调,进一步掏空了宝贵的能量

那么如何在开空调保持舒适的前提下

降低空调功率?

此时,就轮到热管理系统上场了

整个热管理系统控制温度的核心原理

其实就是搬运热量

在提升搬运热量的效率上下下功夫

让热泵空调用一度的电

可以搬更多热量

从而提升空调的制热效率和新能源车的续航

03

二氧化碳转子式压缩机出场

热泵空调搬运热量的效率和制冷工质有关

一般车上用的都是R134a(四氟乙烷)

这个制冷工具人在冬天低温环境下

会受到一定影响

所以,新的制冷工具人二氧化碳出场了

美的也以此研发出了二氧化碳转子式压缩机

不仅具有高效率、低噪音、轻量化等技术特点

能满足车辆高效制冷和低温制热的需求

同时也能够省去高压PTC所带来的额外成本

转子式压缩机的排量小、压力高

密封性能也更好

刚好和二氧化碳的性能呼应上了

即使在-35°C低温环境下

二氧化碳转子式压缩机的制热能力仍然强劲

相比传统热泵续航里程提升20%

解决了新能源车极寒工况下续航衰减快的难题

美的还将压缩机升级为双转子结构

解决了转子质心与运动轴心不重合

导致的动平衡、噪音等问题

此外,为了匹配越来越智能化的新能源车

热管理系统也是有点聪明在身上的

比如,当你想开车的时候

可以通过云端提前开启空调

当你要提速来个弯道超车时

热管理系统也会提前输送一些冷量到电池中

避免电池过热

新能源车行业的发展

也对关键零部件技术提出更多新要求

美的多方面布局新能源车产业链

创新技术,数智升级

助力新能源车产业弯道超车

带给用户更舒适的出行体验

来源:美的集团、消费指南杂志

大众ID.4CROZZ动力电池热管理系统结构与工作原理

随着纯电动汽车的市场快速增长,全球各大汽车生产厂家纷纷开发出各种纯电动汽车,德国大众作为全球的汽车制造企业巨头,打造了电动化车型的生产制造平台MEB(ModularenlektrischBaukasten),MEB是德语“模块化电驱动平台”的缩写。MEB基于汽车制造模块化理念,具有极强的可拓展性,可打造不同车身轴距,并根据不同车型的需求调校出不同的续航里程,在智能化、网联化、自动化等方面实现不断升级和更新迭代。MEB以动力电池为核心,针对不同的车身形式提供更大的轴距、更短的前后悬和更大的车轮满足驾驶需求。

中国一汽-大众近期推出首款MEB车型ID.4CROZZ纯电动车,如图1所示,主要在上汽大众安亭MEB工厂和一汽-大众佛山MEB工厂生产,在整车基础结构保持不变的情况下,电池采用可缩放设计,以实现不同续航里程,每个电池模块采用55kWh及82kWh两种容量电池,不同容量的电池可提供350~550km的续航里程。ID.4CROZZ的高压电池采用独立的模块化设计,每一个电池模组里面又分为24组独立的单元电池,配备强大的热管理系统,具有直接冷却系统,确保即使在高负荷或低温情况下高压电池依然能运行在25~35℃的最佳温度范围。电流、电压和温度参数通过单元模块控制器和主控制单元进行监控。本文主要介绍ID.4CROZZ高压电池热管理系统结构、工作原理及冷却液工作循环回路。

1 高压电池热管理系统概述

纯电动汽车由于高压电池处于不断充电、放电过程,工作时会产生大量热量,热量的产生不仅会导致电池老化,还会使得相关导体上的电阻增大,从而导致电能不是转换为机械能,而是转换成热能释放出去。因此,高压电池通常都配备有热管理系统,一般分为水冷式和风冷式,现在普遍采用水冷式。

2 高压电池热管理系统的作用

—方面由于高压部件工作时,会产生热量,若热量积聚,会影响部件的工作性能,通过此系统带走部件工作产生的多余热量;同时也可将此部分热量再利用,为空调制热提供热源。另一方面,高压电池效能会受温度变化的影响,为确保电池效能,此系统还可以为电池加热。

3 ID.4CROZZ高压电池热管理系统

ID.4CROZZ高压电池热管理系统框图如图2所示,采用Chiller对电池包冷却,采用PTC对电池包加热,全面满足电池包的高低温需求;具备电驱动余热回收功能,通过循环切换,将电机和功率电子的余热收集用于电池包预热;当电池包完成预热,对于热泵配置车型,热泵还可以进一步收集电驱动的余热供给乘员舱,全面提升冬季续航里程。可以选装CO2热泵系统,冬季续航里程提升20%~30%。

4 ID.4CROZZ高压电池热管理系统结构组成

1)高压电池散热器

ID.4CROZZ高压电池散热器采用铝制散热器,如图3所示,安装在蓄电池外壳的外部,有助于防止蓄电池外壳中的高压组件与冷却液接触。高压蓄电池模组通过间隙填料(导热膏)与蓄电池外壳的底部连接。底部保护装置由实心铝制成,可保护散热器免受机械损坏。

2)PTC加热器

高压电池配备了安全性能更高的水暖加热器PTC(图4),负责对高压蓄电池的冷却液进行加热,具备无级调节(PWM)功能。应用PTC加热高效节能,保证了电池低温下的良好性能。相比较MQBHV-PTC,水暖高压加热器体积更小、质量轻、能量密度大、省电性好。

3)整车散热器

车辆前部安装的整车散热器包含冷却散热器、散热器卷帘、冷凝器、散热风扇以及相关导风栅等,如图5所示。散热器卷帘为标准装备,散热风扇优化设计、降噪,导风栅减少进风泄露,同时减低风阻,确保足够的进风量。

4)散热器卷帘(图6)

散热器卷帘100%内置在模块化电驱动平台中,位于冷却液散热器和冷凝器(R134A)/车头气体冷却器(R744)之间。在关闭状态下,卷帘改善了车辆的空气阻力系数,然后根据需要以不同的方式打开车辆前格栅与导流件。为确保足够的进风量,对散热器前部格栅进风面积提出了类似传统车的要求。同时为减少前端进风泄露,降低风阻,并最终提高续航里程,设计了全包围密封件,并匹配进气导流件,提高机舱进气流动密封性。

5)散热器风扇

为满足电动车更高的静音需求,首次在MEB车型采用新型风扇,能降低风扇噪音3dB(78dB→75dB),扇叶数量提升(9→10),风扇直径加大(400→480mm),从而降低转速(400r/min)。

5 ID.4CROZZ高压电池热管理系统的工作原理及冷却液循环回路

1)高压部件冷却液循环回路

ID.4CROZZ热管理系统通过管路将高压部件连接起来,同时借助冷却液及其循环,将高压部件工作产生的热量带走,确保部件不受高温的影响,如图7所示。在温度较低时,热管理系统通过PTC加热器加热冷却液,从而为高压电池进行加热,使其保持在合适的工作温度范围,减少电能损耗。

由于冷却液与高压电池模组不会发生接触,因此冷却液膨胀罐不需要密封。管路连接复杂,维修时必须严格按照维修手册指导进行操作。

2)不带热泵的冷却液回路见图8a,带热泵的冷却液回路见图8b。

6 ID.4CROZZ高压电池热管理系统的冷却和加热回路

1)蓄电池未冷却或未加热时,ID.4CROZZ高压电池热管理系统的散热器旁路开启,如图9a所示。此时节温器温度<15℃,蓄电池温度为8~35℃,热泵无工作需求。节温器打开散热器旁路,蓄电池预热混合阀2V696打开温度最低的低温冷却回路。此时只有低温回路冷却液泵V468被激活。

2)蓄电池被加热时,ID.4CROZZ高压电池热管理系统的散热器旁路开启,如图9b所示。此时节温器温度<15℃,蓄电池温度<8℃,此时热泵无工作需求。节温器打开散热器旁路,蓄电池预热混合阀2V696打开温度最低的低温冷却回路,蓄电池预热混合阀V683打开蓄电池加热回路,此时2个冷却液泵均被激活。

3)蓄电池未冷却或未加热时,ID.4CROZZ高压电池热管理系统的散热器内有冷却液流动,如图10a所示。此时节温器温度>15℃,蓄电池温度为8~35℃,此时热泵无工作需求。节温器关闭散热器旁路,蓄电池预热混合阀2V696打开温度最低的低温冷却回路,此时只有低温回路冷却液泵V468被激活。

4)蓄电池由冷凝器热交换器冷却时,ID.4CROZZ高压电池热管理系统的散热器内有冷却液流动,如图10b所示。此时节温器温度>15℃,车辆运行期间蓄电池温度>35℃,充电期间蓄电池温度>30℃,此时热泵无工作需求。

节温器关闭散热器旁路,蓄电池预热混合阀2V696打开温度最低的低温冷却回路,蓄电池预热混合阀V683打开蓄电池冷却回路,此时2个冷却液泵均被激活。

5)蓄电池由低温回路冷却时,ID.4CROZZ高压电池热管理系统的散热器内有冷却液流动,如图11a所示。此时节温器温度>15℃,蓄电池温度>30℃,此时热泵无工作需求。节温器关闭散热器旁路,蓄电池预热混合阀2V696打开蓄电池接口,蓄电池预热混合阀V683打开蓄电池冷却回路,此时2个冷却液泵均被激活。

6)蓄电池未冷却或未加热时,ID.4CROZZ高压电池热管理系统的散热器内有冷却液流动,如图11b所示。此时节温器温度>15℃,蓄电池温度为8~30℃,此时热泵有工作

需求。节温器关闭散热器旁路,蓄电池预热混合阀2V696打开蓄电池接口,蓄电池预热混合阀V683打开蓄电池加热回路,此时只有低温回路冷却液泵V468被激活。

7 电驱动系统的冷却和加热

ID.4CROZZ的电驱动系统同样是采用液体冷却,与高压电池共用热管理系统,冷却液流入电子驱动器,首先通过电源逆变器(PI)运行,因为半导体规定了允许的最大冷却液温度。流过PI后,冷却剂通过密封管塞元件进入电机外壳的冷却水套。热量主要是由定子铜绕组的电阻损耗产生的,通过绕组绝缘层和叠片到达机壳中的冷却水套。冷却介质通过优化的周向冷却通道进入定子,并在冷却水道的末端通过冷却连接软管进入车辆的外部冷却回路,如图12所示。

 

联系我们


微信手机同号:18038109954
库尔能源制冷片总部:深圳市宝安区西乡街道名优采购中心B座B210。联系电话:18038109954 胡总监 (TEC制冷片厂家) 粤ICP备2024213474号 XML地图 半导体制冷片厂家