【能源人都在看,点击右上角加“关注”】
随着国际市场对化石能源的消耗日益增加,为了解决环境恶化的问题,世界各国不断调整相应的能源结构,以期改变对化石能源的依赖,其中电动汽车的推广成为重要的组成部分,与传统汽车相比,电动汽车具有节能环保、能量利用率高等特点。如果电动汽车能够得到大力推广与使用,将极大地缓解当今日益突出的能源问题。
自上世纪90年代起,为了抢占市场国外许多汽车企业在电动车的研发和推广过程中投入了大量的资源。世界各国政府也相继出台了相应的政策扶持电动汽车市场的发展,比如美国主要采取的措施:新一代的汽车伙伴关系计划;自由汽车合作伙伴计划。日本主要采取的措施:着力研发低排放量的汽车;日本氢能和燃料电池示范工程。欧盟主要采取的措施:着力研发电动汽车的燃料电池的关键技术;燃料电池发展示范计划;燃料电池公共汽车示范项目;电动汽车的城市分布系统方案。中国主要采取的措施:电动汽车、燃料电池汽车以及中国863电动汽车研发计划;中国973电动汽车专项规划。
当前电动汽车主要分为3种类型:燃料电池汽车、纯电动汽车以及混合动力汽车。其中燃料电池汽车主要以氢燃料电池为主,其发展主要受到储氢材料的制约。混合动力汽车的发展前景并不明朗,目前发展较快的主要是以锂电池为动力源的纯电动汽车。然而在锂电池电动汽车迅猛发展的今天,随着市场上纯电动汽车保有量的不断增加,锂电池的热安全问题逐渐限制纯电动汽车的发展。
动力电池是电动汽车的基础,其热特性是影响电池安全、寿命和使用安全的重要因素。在使用过程中,伴随着能量的交换和转移,电池组自身也产生热效应,这种热效应如果没有进行合理的控制,容易造成产热不均、温度分配不均、电池间温差较大等问题。长此以往,必然会导致部分电池系统的充放电性能、容量和使用寿命等下降,从而影响电力驱动系统的性能,严重时甚至会引发热失控危害驾驶人的生命安全。
那么温度对锂电池究竟有着怎样的影响呢?根据相关资料,温度对锂离子电池的影响主要集中在以下几个方面:
1.容量衰减,温度的变化直接影响锂电池内部材料的性质和结构,进而影响锂电池容量的变化;温度越高内部材料的临界失效越严重,电池的容量衰减也越快。
2.热失控,在锂电池工作过程中因为锂电池自身的热阻效应,会产生发热现象,如果不能很好的对这种热效应进行处理,大量热量会积聚在电池内部,诱发有害化学反应的增加,进而引起连锁反应使电池的发热现象失去控制,严重时会引起电池鼓包甚至爆炸。
3.低温特性,低温状态下,锂电池内部的导电介质受到影响,其导电能力受到削弱,放电过程中电极两端的能量交换效率降低而充电过程中的效率受低温的影响并不十分明显,因此会产生过充现象导致电极附近出现锂枝晶现象,进而影响锂电池的各项性能指标,严重时甚至刺破隔膜造成短路引起火灾或爆炸。
锂离子电池的最佳温度区间、工作温度区间和可承受温度区间分别为10~35℃、-20~45℃和-40℃~60℃。10~35℃这一温度区间为锂电池的理想工作状态。在-20~45℃区间内锂电池寿命衰减较小,仍能够正常工作。然而,当温度在-20~-40℃内时,电解液可能会凝固,阻碍锂离子的流动,导致阻抗增加,电池容量明显下降。当温度超过60℃时,锂离子的化学特性开始变得越来越不稳定,电池内部有害化学反应速率较高,可能会破坏电池,严重时会发生事故。
锂离子电池3类工作温度
为了使锂电池电动汽车的安全性得到充分的保障,如何对锂电池热效应进行有效的控制成为一个不可忽视的问题。在探索如何处理锂电池热效应的过程中,科研工作者和工程师们不断贡献自己的智慧,开拓出多种多样的方式。
如何对锂电池进行有效的热控制呢?总体的思路是从源头开始,贯穿整个产业链,在每个细节都尝试进行控制。从电池机理上入手的探索思路是开发新的电极材料和介质材料,使用更高效、稳定的材料进行锂电池的生产开发,从源头保证锂电池的安全应用。然而当前的科研工作还不能很好的满足生产生活需要,如何在现有的产业基础上对锂电池进行安全优化便成为焦点。
目前主流的锂电池热管控方式主要分为以下几种:空气冷却、液体冷却、热管冷却、基于相变材料的冷却方式。这四种锂电池的热管控方式各有特点。
典型热管控技术的特点
空气冷却主要是以空气为介质进行热交换,通过空气的流通来对发热的锂电池组进行降温处理,根据空气流动的方向和制冷结构布局,可以将空气冷却方式简单的分为串行和并行两种冷却方式。按照空气的驱动方式又可以分为自然通风和强制通风。空气冷却的热控制方式具有结构简单、轻便、寿命长、可靠性高、成本低等特点,然而空气的比热容较低,空气冷却难以处理大量的热量,因此其应用具有一定的局限。早期的电动汽车多选用这种技术。
液体冷却是以液体作为导热介质进行的热量控制方式。根据是否与电池接触,可以分为非接触式和非接触式;根据液体流动的驱动方式可以分为主动式冷却和被动式冷却;根据液体的流动通道又可以分为管式液冷、板式液冷。与空气冷却的方式相比,液冷系统的结构复杂、成本较高。但是相交于空气,液体导热介质的比热容有着更大的调整空间,其散热效率和散热速度也更可观。目前电动汽车主要应用液体冷却系统来进行锂电池热管控。
主动式液体冷却方式
被动式常规液体冷却方式
板式液体冷却方式
热管冷却的冷却模式类似于空调的制冷机理,按照其传热机理可以将制冷系统分割为蒸发端、绝热端和冷凝端三个部分。在冷却过程中主要依靠冷却介质发生相变来实现换热过程,相较于液冷系统热管冷却具有更高的散热效率和散热速度。同时因为冷却介质密封于密闭空间,降低了导热介质泄漏的风险,热管具有更高的安全性。然而热管制冷的成本较高,性价比较低,比较适合应用于经常工作在高倍率工况的锂电系统。
基于相变材料的冷却体系是指利用在特定温度下发生相变吸收或释放能量的材料,通过材料的热量变化来保持锂电池系统维持在一个适宜的温度区间。相变冷却具有结构紧凑、接触热阻低、冷却效果好等优点,然而相变材料吸收的热量需要依靠液冷系统、风冷系统、空调系统等导出,否则相变材料无法持续吸收热量导致失效。此外,相变材料占空间,成本高。因此,相变冷却技术多和其它热管理技术结合起来使用,能起到均匀电池温度分布、降低接触热阻以及提高散热速度等作用。
在锂电池的热管控探索中,除了从电池材料到导热方式的革新之外,还应该有一套维持电动车所有蓄电池组件的工作,并使其处于最佳状态;采集车辆的各个子系统的运行数据,进行监控和诊断;控制充电方式和提供剩余能量显示等职责的能量管理系统。因此,研究新的动力传动配置和控制器以及更具有通用性的能量管理系统已经成为目前的发展方向。
参考资料:
钟国彬,大容量离子电池储能系统的热管理技术现状分析
杨洋,纯电动汽车锂离子电池组液冷散热系统研究
许志龙,电动汽车动力电池的发展与温度管理现状研究
刘卓然,国内电动汽车发展现状与趋势
本文来源:粉体网 本公众号发布本文之目的在于传播更多信息,并不意味着本公众号赞同或者否定本文部分以及全部观点或内容。本文版权归原作者所有,如涉及版权问题,请及时联系我们删除。
专业报告:
●《2018年动力锂离子电池行业研究年度报告》(20000元)
●《2018年磷酸铁锂产业链价值研究报告》(20000元)
●《2018中国三元材料市场年度报告》(20000元)
●《2018年锂电负极材料产业链剖析》(20000元)
●《2018年锂电负极材料市场年度报告》(6800元)
●《鑫椤前瞻-全球锂电池产业内参》(10000元)
●《正负极材料月度报告》(20000元)
以上报告由鑫椤资讯制作
咨询电话:18918035256
免责声明:以上内容转载自中国化学与物理电源行业协会,所发内容不代表本平台立场。
全国能源信息平台联系电话:010-65367827,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社
【电池热管理】动力电池冷却系统的热管理锂离子电池已成为引领下一轮汽车革命的最合适的选择,其功率密度、高能量和封装效率是主要的参考因素。电池的动态运行和工作环境导致电池热管理是影响电池工作的主要因素。分别对不含和含冷却管理的电池系统进行了设计和仿真计算。最初,采用296个锂离子电池设计了66 kWh/400V的无冷却电池系统,整体尺寸1550×1190×270mm,重量400kg。结果表明:温度分布高于电池的最佳性能温度范围(25-55℃)。考虑余热的耗散和电池温度分布的均匀性,在系统中添加了冷却系统。使用含40%乙二醇水溶液对电池进行散热,电池系统恒定功率输入1868W,冷却液温度24℃,入口流量352kg/h。结果表明:冷却液温度低于46℃,电池温度低于50℃;分析并验证冷却液的压降,对电池冷却系统各处的温度进行对比分析。
电池热参数-产热及其影响
01
锂离子电池
锂离子电池由正极、负极和电解质组成,在充电过程中电子从正(阳极)移动到负(阴极)电极,反之亦然。与其他电池技术相比,锂离子电池的优势在于其体积和质量-能量密度。该特性使锂离子电池对不同应用领域非常有吸引力,尤其是在能量密度至关重要的汽车行业。锂电池有三种不同的形状,即圆柱形,棱形,及袋状。
1.电池内部产热
变熵电化学反应和变电流电阻热在电池充电和放电过程中产生的热量。在不使用冷却系统的情况下,放电过程中产生的热量进入电池。一旦找到了热产生和热传递速率,t就可以在每个时步中计算,如下式:
其中,m代表模块质量,Cp表示模块比热容。
2.电池性能
锂离子电池的性能很大程度上取决于电池的温度。锂离子电池的最佳工作温度为25 ~ 55℃,在此范围之外将对电池的性能和寿命产生负面影响。
3.锂离子电池的热失控
当电池温度超过一定限度时,就会发生一系列的放热反应,从而进一步提高温度。链式反应会持续下去,导致热失控。如图1所示,热失控过程中产生的大量热量和气体会导致火灾和爆炸。热失控可由高温、过充、短路、钉穿等多种原因引起,分析由过热引起的爆炸。当SEI(固体电解质界面)分解时,热失控在大约80℃开始,SEI是负极和液体电解质之间的保护层。随着SEI的破坏,电解质和电极将在100℃左右开始反应,放出大量的热进一步提高温度。在130℃时,阳极和阴极之间的分离器熔化并导致内部短路。在200℃时,链式反应开始首先是锂金属氧化物,然后电解液与氧气反应并分解。
图1 单个电池的产热
4.电池热管理系统
如前所述,不合适的电池温度会对电池的性能、寿命和安全性产生负面影响。因此,每个电池系统都需要进行热管理(BTMS)。BTMS的主要是将电池保持在最佳温度范围内,并维持电池包的温度均匀性。在此之后,还必须根据电池组的应用情况考虑重量、尺寸、可靠性和成本等其他因素。本文采用直接液冷法,覆盖整个电池表面保证冷却的均匀性,该方法消除了电池中的热点/冷点进而提高了电池的性能。冷却剂的选择要求低粘度、高导热系数和高比热容。
02
冷却剂
冷却剂流量设置为所需的最小值,以保持入口和出口之间的总冷却液温差等于5℃。冷却剂质量流量如下式所示:
Q表示每个单元产生的热量,ρ和Cp分别是冷却剂的密度和热容。∆T设为5℃,
表1 冷却剂计算结果
表2 乙二醇水溶液物性参数
数值模型
采用商业计算流体动力学(CFD)软件STAR-CCM+进行数值模拟。连续性、动量和能量的控制方程分别如下式所示:
为了模拟冷却剂的流动,采用了标准k-Epsilon模型,具有鲁棒性和稳定性。除了守恒方程之外,还求解了双输运方程(PDEs),该方程解释了湍流能量的对流和扩散等效应。这两个传输变量分别是湍动能k和湍耗散率ε。
纳维-斯托克斯方程如下式所示:
k-ε模型如下式所示,其依赖于自由剪切运动,如具有相对较小的压力梯度的流动。
采用标准K-Epsilon通用模型常数如图所示:
湍流粘度如式所示:
其中,Prt表示湍流普朗特数,gi是引力矢量在第i个方向上的分量。对于标准模型和可实现模型,Prt的默认值是0.85。
热膨胀系数β定义为:
Wall Y+方程,紊流模型k-ε仅限于大雷诺数和均匀的紊流,不适用于粘性效应占主导地位的壁面附近。Y+计算如式所示:
其中,Ur表示摩擦速度,(m/s);yp表示第一层网格到壁面的距离;v表示动力粘度(m2/s)。电池冷却剂的流动模型采用k-Epsilon湍流模型。
电池仿真
01
电池包设计
电池组由多个相同的电池,BMS电流收集器,电池支架,冷却板,接线盒,和顶部和底部电池盖组成。所述单元可以配置为串联、并联或两者混合以输送所需电压和容量。仿真模型如图2所示。
图2 电池模型拆解图
袋状电池由薄铝箔制成并包裹在聚合物层中;电池模块由多个袋状电池堆叠成外壳;热冷却泡沫垫沿外壳粘贴确保结构的稳定和散热;添加塑料框架保证标签分离防止短路。电池管理系统由微处理器和塑料芯片组成;NVH泡沫被用作结构构件抑制来自包装的噪声和振动。电池冷却系统在给定泵送功率下优化冷却流路,并按要求维持电池温度。母线和其他载流元件通常由铝制成,由于铝具有优良的导电性。ABS,丙烯酸和塑料用于连接器和各种组件的覆盖物。表3解释电池组的电池规格。
表3 电池参数
02
CFD流程
图3介绍了含冷却系统和无冷却系统的电池热仿真的工作流程。
图3 流程图
03
CFD设计
图4建立了电池热行为的几何模型,电池组件及其材料性能如表4所示。
图4 几何模型
表4 电池材料参数
04
冷却通道设计
冷却通道的计算如下式所示:
其中,A表示冷却通道的面积(m2);M表示冷却剂质量流量(kg/s);V表示冷却剂速度(m/s);ρ表示冷却剂密度(kg/m3)。
05
网格
采用STAR-CCM+网格划分生成多面体网格,对于流体域,首先进行网格细化同时确定冷却管壁上的边界层。固体域的基础尺寸为5mm,流体域的基础尺寸为4mm。基于y+目标值1,体积增长率设置为1.2,边界层厚度设置为0.5 mm。此外,进行网格无关性验证,三种网格数量分别增加了25%,确定网格数量为1000万个。体网格如图5所示。
图5 网格模型
06
物理连续体
物理连续体是一个由数值定律和模型控制的环境,这些定律和模型将应用于我们模型的一个或几个领域。可以是气体、流体或固体,为每个固体和流体组件设置了物理。流体域采用隔离绝热K-Epsilon湍流壁函数模型,外固体表面考虑对流。与环境换热系数为10W/m2·K,固体部分的环境温度为300K。系统的边界条件为冷却剂进口质量流量352kg/h和温度24℃。收敛系数满足质量流量、温度和压力等所有因素。表5描述了连续体设置。
表5 CFD物理连续体
DOE矩阵 -热模拟
表6表示11种不同模拟的DOE矩阵,一种模拟是没有冷却系统,四种模拟是有液冷(2个进气口和2个出口),最后一类是有冷却(1个进气口和1个出口)。对电池系统进行了三种不同类别的模拟。
表6 DOE矩阵
07
无冷却系统的电池模型
图6为无冷却系统的CAD模型。在不考虑冷却剂流动的情况下进行了模拟,外罩对流速率为10w/m2·k,环境温度为27℃。
图6 无冷却系统的CAD模型
没有热管理系统的电池系统的结果,图7表示无冷却系统的温度分布;图8是截面温度分布;图9是图7为电池各部件的温度曲线图。可以看到内部部件的温度值超过了100℃;图10是各部件的最大温度图。
图7 温度分布 图8 界面温度分布
图9 电池各部件的温度曲线 图10 各部件的最大温度
电池系统在高温下的影响,如图11所示。
图11 无冷却系统的温度影响
08
带冷却系统的电池-第一类结构
图12为第一类冷却结构系统图,有两个冷却入口和两个冷却出口。
图12 第一类仿真结构
对冷却剂和固体分别设置各自的热特性和固体组分。电池使用的材料是铝、铝合金、热塑性塑料、导热润滑脂、NVH泡沫和40%乙二醇溶液作为冷却剂。对系统进行仿真分析结果如图13所示。case2(管道1&2进口和管道3&4出口)的温度均匀性优于其他情况,case 2中各部件的最高温度较低,主要是冷却剂带走了更多的热量。case2的压降为48.1mbar,这是由于通过冷却系统的流道造成的。
图13 温度分布
09
带冷却系统的电池-第二类结构
图14为第二类冷却配置的仿真结构图,包含一个进口一个出口。
图14 第二类仿真结构图
从图中可以看出,case 8(1号管道入口和4号管道出口)的温度均匀性较好。由于电池系统的冷却剂传递了更多的能量,外壳8的电池部件温度最低
图15 温度分布
图16 冷却剂温度分布
10
总结
对不同电池配置进行了设计和三维仿真。没有冷却系统的电池系统导致其部件温度较高(高于120℃),从而导致系统故障。I型和II型冷却系统配置在最佳电池温度范围内运行(25-55℃)。I型(多进出水口)比II型(单进出水口)配置更好、更高效。考虑到电池的产热和温度均匀性,从冷却矩阵中选择case2(1&2个入口,3&4个出口)作为最佳配置。case2的压降为48.1mbar,电池部件中最低温度(34.55℃)。
结果和讨论
为了实现电动汽车电池包的冷却性能和成本效益,热管理和冷却系统类型的选择是非常重要的。电池系统的冷却涉及到冷却方式、冷却系统的设计、电池冷却系统的进、出口等几个因素。在本文中,电池热管理系统选择了液冷方式。没有选择风冷方式,因为风冷系统的传热系数比液冷要低,且空气的热容量小,很难保持包内的温度均匀。选择40/60比例的水和乙二醇混合物用于间接冷却系统,因为它在车辆应用中具有较低的冻结温度。水/乙二醇具有较高的热容量,因此采用水/乙二醇作为传热流体可以大大减小系统内部冷却液的温度变化,同时也可以达到温度均匀性。
-END-
文章来源:汽车测试网、AutoAero
注:本站转载的文章大部分收集于互联网,文章版权归原作者及原出处所有。文中观点仅供分享交流,如涉及版权等问题,请您告知,我将及时处理!