半导体制冷片厂家
 
 
行业新闻 制冷技术 公司新闻 半导体技术
电池热管理系统软件开发;如何设计电池热管理系统
来源:本站 时间:2024-06-22
如何基于软件模型设计电池热管理系统?

电池热管理的主要功能包括:电池温度的准确测量和监控;电池组温度过高时的有效散热;低温条件下的快速加热;保证电池组温度场的均匀分布;电池散热系统与其他散热单元的匹配。

图1电池热管理关系图

电池包的冷却有风冷和液冷两种方式。研究表明风冷方式易实现,但电池包温度梯度变化较大,不利于电池稳定工作。通过冷却液与空调系统的制冷剂进行换热的液冷方式逐渐成为主流。对新能源汽车电池热问题的科学管理,需要考虑多个系统的相互影响。

各系统之间的影响关系如图1所示,电池包冷却与汽车空调系统、电机冷却系统、发动机冷却系统等多个系统存在不同程度的耦合。这样在做电池系统温度控制策略、热管理时就要同时分析与其他系统的影响关系。

解决方案

为了解决电池热管理中,流体系统之间复杂的耦合系,可以采用Dymola软件的蒸发循环库、液冷库、电池库等搭建一维仿真模型。去模拟整个模型系统,分析不同系统之间的耦合关系,从而实现对复杂系统的化控制。

图2Dymola模型库

Dymola软件具有丰富的模型库,采用基础库与商业库可以方便的搭建电池热管理系统。蒸发循环库涵盖了市面上几乎所有主流的制冷剂,有着精确的两相流模型和根据结构建模的换热器模型;考虑元件生热和温度对元件电气性能影响的电阻、二极管、晶闸管、电机等基础元件模型;具有热容、热传导、对流、辐射、温度、热流边界条件等的传热元件模型。

可用于电池液流管路建模、部件选型、系统性能研究的液冷库中包括管路、控制阀、恒温阀、泵、风机、换热器、膨胀箱等模型;考虑电池单体的差异和温度对电池容量、外特性影响的Modelon电池库,可用于分析电池的电、热、寿命等方面的特性。

对于电池热管理而言,控制系统是必不可少。Dymola基础库中包含用于控制、逻辑建模的模型库,可用于搭建控制系统。另外也可以通过FMI接口导入控制模型对应的FMU通过Simulink搭建控制律模型,并将模型转为FMU导入Dymola中,可与电池系统模型、加热/冷却系统模型进行联合仿真。

图3控制系统模型

采用Dymola软件提供的蒸发循环库,可搭建热管理系统的空调系统模型;采用Dymola软件中的液冷库可以搭建电池冷却循环、发动机冷却循环和功率电子元件冷却循环等;采用Dymola软件中的电池库可以搭建电机、电池等组成的电池驱动系统。蒸发循环库、液冷库及其他模型库可以无缝连接组成大系统,便于热管理模型系统仿真分析。

Dymola还可搭建控制算法,同时其也可以通过Simulink接口,调用Matlab/Simulink软件的控制算法,实现热管理系统控制模型与仿真物理模型之间的联合仿真,用于控制策略的设计、验证,使工程师更好的设计热管理系统模型。

应用案例

图4为采用Dymola软件搭建的电池热管理一维仿真模型。左侧红色点划线区域为采用蒸发循环库搭建的空调系统蒸发循环;中间红色点划线区域为采用液冷库搭建的电池冷却循环;蒸发循环与冷却循环之间黑色实线区域为冷却液与制冷剂之间的换热单元;最右边红色实线区域为电机电池等元件组成的驱动系统。

图4电池管理系统一维仿真

电池电机供电、电机驱动负载,电池产生的热量通过液冷循环与空调系统之间的换热器实现冷却液与制冷剂之间的热量交换,然后通过空调系统传到发动机舱,最后热量被空气带走。图5为不同泵的转速下电池包温度变化曲线。改变冷却循环中泵的转速可以将流过电池包的冷却液温度保持在所需要的温度范围。

图5液冷泵不同转速下电池包温度变化曲线

图6为在搭建的模型系统基础上添加简单控制系统模型,模型运行中可实时查看蒸发循环压焓图,监测系统运行状况。蓝色区域检测蒸发器出口温度,通过控制变排量压缩机排量保证蒸发器出口温度恒定。黑色区域通过调节冷却循环中泵的转速和蒸发循环中冷凝器空气侧空气流量使电池温度保持在所需的温度范围内。

图6简单控制模型

图7不同散热功率下电池包温度变化曲线

图7所示,电池包设定温度(红色)与实际温度(绿色)变化关系,在100s时电池包发热功率突然降低,电池包温度也发生变化,但通过调节发冷却泵转速与冷凝器侧风扇转速快速调节系统的散热量,从而使电池包温度稳定在合理的范围内。

总结

采用Dymola一维仿真软件可以完成仿真模型系统搭建与仿真分析。所搭建模型既可以用于模型匹配设计、元件选型也可以用于系统仿真进行模型系统能量分配分析。还可以作为仿真模型可以提升工程师对系统性能的理解,作为被控对象用于控制策略设计、验证控制模型的准确度及控制效果。

解析威马热管理2.0系统,提升电动车冬季续航打折痛点

威马第二代热管理技术

美国汽车工程协会(IAA)曾对电动汽车续航里程在冬季进行测试,测试中平均减弱比例可达到41%,城市工况下在冬季启动风暖后续航平均还将进一步削减20%-30%。

在日常使用中有很多因素影响车辆冬季的续航里程,比如空调系统的使用、低温环境对动力电池活性产生的影响等使得电动汽车在续航里程上大打折扣。那么如何提升冬季电动车的续航里程呢?看看威马热管理2.0系统给出的答案。

NCM811电池包

目前电动汽车主要采用的动力电池有两种,一是NCA(镍钴铝酸锂),二是NCM(镍钴锰酸锂),2019年8月威马汽车推出威马EX5 520车型换装了全新的动力电池NCM811, NCM动力电池组后三位数字是代表材料中镍钴锰的含量。

威马汽车上所使用的动力电池有两款分别是NCM523和NCM811,其NCM523镍含量为50%,NCM811镍含量为80%,在电芯能量密度上新电池提升到了280Wh/kg。

同时在威马在NCM811电池组中配备了电池热管理2.0系统和冬季续航增程系统,帮助驾驶员在冬季提升近100公里的续航,新的动力电池加之新的热管理系统使得威马EX5 520的NEDC续航达到了520km。

串联布局

就目前电动车为了满足冬季使用的要求通过电池加热来提升电池包温度,而在加热电池包的过程中就会消耗很多电量,所以会在总续航里程上打折扣。威马为了避免车辆在冬季出现续航缩减的情况,将电池热管理1.0系统升级至2.0版本。新系统通过柴油加热辅助PTC电加热系统,让电池包在寒冷天气下可以快速提升使用环境所需温度,保证电芯使用效率。

从物理角度分析,电池想要保证其活跃性首先要保证在其正常工作温度,当温度降低或者过高都会直接影响电池组的工作效率,需要通过控制电池组的温度来保证其在正常温度范围之内,这就是热管理系统主要负责的工作。

BMS系统

作为电动汽车冷却系统标配的液冷系统安装在电池组底部,主要依靠冷却水泵带动冷却液在冷却管道中循环流动,通过在散热器的热交换等物理过程,冷却液带走电动机与控制器产生的热量。为使散热器热量散发更充分,通常还在散热器后方设置风扇,确保电池温度处在最佳工作区间。另外,电池包每个电芯模组还内置两个温度传感器,通过BTMS和BMS系统来管理电芯提升电池寿命。

在配备独立液冷系统的基础上,威马汽车还提供了定制化电加温和柴油加温系统选装,进一步实现电池包在-30℃~50℃不同环境温度区间的高适应和高稳定性,确保电池不管是在放电还是充电过程中,都保持在最佳温度区间。

威马针对提升冬季续航里程,在电池热管理2.0系统中新增冬季续航增程系统作为用户选装配置。该系统主要针对北方严寒地区使用,此系统采用柴油加温系统对电池包和座舱进行加热,最大限度减少空调的电耗,提升冬季续航里程20%(相当于NEDC综合工况下100公里)。

这套系统在真实用车环境下表现如何呢?威马使用了一套严格的实验方式测试该系统,他们将车辆放置在零下7°C的环境中13小时后,开启空调系统至车内温度达到21°C时电量消耗仅为1.29Kwh,相比于热管理1.0系统节省了13.24Kwh的电量,所以该系统将原本用来使用空调取暖的电量节省出来提升了100km的续航里程。

电芯模组

此外,威马采用平台化模式开发电池包,这样既方便兼容不同车型对电池包的使用要求,还可以实现快速更新迭代,降低研发成本和周期,同时针对用户最为关心的电池安全问题,威马汽车的电池包箱体使用DP780高强度钢并经过横纵向加强筋结构设计,连同壳体内部多缓冲区设计、电芯模组铝制中空外保护设计,以及电池包底部高分子涂层工艺,组成电池组物理防冲击保护模块。(本文首发钛媒体,作者/姚圣祺,编辑/项欧)

更多精彩内容,关注钛媒体微信号(ID:taimeiti),或者下载钛媒体App

 

联系我们


微信手机同号:18038109954
库尔能源制冷片总部:深圳市宝安区西乡街道名优采购中心B座B210。联系电话:18038109954 胡总监 (TEC制冷片厂家) 粤ICP备2024213474号 XML地图 半导体制冷片厂家