半导体制冷片厂家
 
 
行业新闻 制冷技术 公司新闻 半导体技术
比亚迪e平台3.0热管理系统-比亚迪e5热管理系统
来源:本站 时间:2024-05-24
深度:研判比亚迪e平台 3.0一体化热管理(基于冷媒)系统技术状态

2021年4月29日,新能源情报分析网发布《深度:研判比亚迪e平台 3.0架构及一体化热管理系统技术状态》一文,旨在解读比亚迪在上海车展期间推出的e平台 3.0车型平台解决方案技术特点。在e平台 3.0架构下,引入车身一体化的刀片电池、基于SiC功率器件“8合1”电驱+电控总成、域控制+BYD OS的全新设计技术同时,更是全行业最先应用基于冷媒介质的一体化热管理技术(控制策略)。

在比亚迪官方制作的e平台 3.0宣传片中,提到了“宽域工作温度-摆脱地域限制”这一关键信息点。显然,基于冷媒介质的一体化热管理技术,将会用于那款“0-100公里加速2.9秒”的超级电动四驱车,在寒冷和高温环境都保持较低的能耗状态。

截至目前,基于冷媒介质的一体化热管理系统只出现在e平台 3.0架构展具中。

红色箭头:热泵电动空调压缩机

蓝色箭头:刀片电池前端的冷却/预热管路(一进一出)

黑色箭头:膨胀压力调节阀体

白色箭头:一体化热管理控制集成模块

黄色箭头:一体化热管理控制集成模块的冷/热量交换器

绿色箭头:“8合1”电驱+电控系统冷却管路

比亚迪e平台 3.0的一体化热管理(冷媒介质)技术,是以热泵电动空调压缩机为基础,一体化热管理控制模组为核心,对产生的“冷量”或“热量”再分配至不同需求单位(驾驶舱、刀片电池、电驱动)。

以比亚迪汉EV为广泛代表车型,动力电池热管理控制系统高温散热流程如下:

电动空调压缩机输出冷量(冷媒)至水冷板控制模组,带有动力电池散发热量的冷却液循环至水冷板控制模组,进行“冷量”或“热量”交换。最终,被冷却的冷却液再次循环至动力电池内部为模组进行高温散热伺服。

动力电池热管理控制系统低温预热流程为PTC控制模组通高压电,加热动力电池循环管路内的冷却液,已达到低温预热需求。

显然,传统的基于冷却液介质的动力电池低温预热模式较为简单;基于冷媒介质的动力电池高温散热模式较为复杂。

在比亚迪e平台 3.0架构下,一体化热管理系统的低温预热和高温散热功能的达成,全部由冷媒作为介质,替代了传统的冷却液。

开启高温散热模式后,热泵电动空调压缩机经冷媒输出“冷量”进入刀片电池系统。

开启低温预热模式后,热泵电动空调压缩机经冷媒在“冷热”交换过程中产生“热量”进入刀片电池系统。

需要注意的是(1),在“宽域工作温度-摆脱地域限制”工况下,热管理集成模块将发挥关键的作用。在整车层面的一体化热管理系统中,热管理集成模块与“8合1”电驱+电控总成循环管路(冷却液介质)关联;与驾驶舱空调系统(基于冷媒)关联;与刀片电池热管理系统(基于冷媒)关联。

红色区域:热管理集成模块中,以冷媒介质向驾驶舱或刀片电池输出“冷量”或“热量”的部分

黄色区域:热管理集成模块中,以冷却液介质向驾驶舱输出“热量”的热交换器部分

蓝色箭头:引入“8合1”电驱+电控系统循环管路,携带“热量”的热交换器部分

蓝色箭头:在热交换器中,将“热量”交换至热管理集成模块中冷却介质循环管路的部分

上图疑似为比亚迪长沙工厂制造的热管理集成模块装车实物特写(1)。

需要注意的是(2),长沙工厂制造的车载空调系统(水冷板控制模组、不同功率的PTC控制模组)全部用于比亚迪旗下EV/DM乘用车,以及大部分EV商用车。在售的汉EV\DM、唐EV/DM都适配同一个物理尺寸的水冷板控制模组。

黄色箭头:热管理集成模块的通讯线缆接口

白色箭头:热管理集成模块上端设定7组电磁阀体用来控制冷媒介质的流量

红色箭头:热管理集成模块下端的热交换器

绿色箭头:热交换器下端的冷却液温度传感器

上图疑似为比亚迪长沙工厂制造的热管理集成模块装车实物特写(2)。

绿色箭头:位于热管理集成模块上端,用于控制冷媒流量的7组电磁阀体

蓝色箭头:位于热管理集成模块上端,用于获取冷媒压力传感器

白色箭头:位于热管理集成模块上端,由7组电磁阀体伺服的相关空调管路接口

黄色箭头:位于热管理集成模块上端侧面,未知功能的电磁阀体

红色箭头:位于热管理集成模块上端侧面,控制与下端热交换器“冷量”和“热量”交换的电磁阀体

需要注意的是(3),这套热管理集成模块没有设定高电压(350伏级别)PTC控制模组,全部电磁阀体或压力传感器都采用的是12伏低压电。这意味着在热泵电动空调压缩机启动后,无论低温预热还是高温散热模式,由12伏电压电伺服的热管理集成模块的耗电量都处于较低状态。

在热管理集成模块下端关联了1组热交换器,与“8合1”电驱+电控循环管路内的冷却液关联。或将“8合1”系统中的热量通过热交换器为刀片电池系统进行低温预热伺服;或由“8合1”系统中的热量直接用于驾驶舱空调制暖伺服。

上图左为BC-28系列电动空调压缩机;上图右侧为BC-34系列电动空调压缩机

当下比亚迪全系EV/DM车型都标配了自行研发和量产的BC系列电动空调压缩机,其中分为BC-28系列、BC-34系列和BC-36系列。其中BC-28和BC-34系列某型号电动空调压缩机已经集成在长城欧拉黑猫和好猫车型,部分BC-28系列机型用于腾势EV/DM车型。

“4通”阀体大量装车应用,出于更多的循环管路伺服不同温度的分系统的需要。起码驾驶舱制暖系统所需的“热量”,要将冷却液加热到在60摄氏度以上;动力电池低温预热所需的“热量”,要将冷却液加热到25-30摄氏度;动力电池高温散热所需的“冷量”,要将冷却液降至10摄氏度左右。最理想的设定是,3套循环系统闭环运转互不干涉。可是如此一来庞大的管路带来的“额外”负载的冷却液,系统重量和成本大幅提升。

因此,打破传统的循环体系,将一些需要不同温度“热量”伺服的分系统整合到一个管路,通过“4通”阀体切换冷却液的流量进行控制,降低了复杂程度、简化了结构。

这套由上图为比亚迪研发和量产的“4通”电磁阀体,用于唐EV\秦Pro EV\宋Pro EV等车型。通过带网关的控制策略,通过1组执行机构(电机)控制冷却液流出走向。

红色箭头:执行机构

蓝色箭头:冷却液流入端

绿色箭头:冷却液流出端

白色箭头:冷却液流出端

黄色箭头:冷却液流出端

在e平台 3.0架构下的一体化热管理系统中,由于冷媒介质替代了冷却液用于动力电池热管理循环系统“冷量”和“热量”的交换,并用热管理集成模块替代“X通”阀体和部分管路。因此,在可靠性上一体化热管理系统中将全面用冷媒硬管替代冷却液软管,N组“X通”阀体全面取消,可靠性与安全性大幅提升。

上图为比亚迪自行研发和量产5千瓦PTC制暖控制模组。这款设定在鼓风机内,PTC控制模组不再采用加热冷却液的技术,而是直接加热经过的自然风。2010-2013年期间,风加热技术是最早应用在电动汽车上,因为耗电量太大而转向冷却液加热技术。在2017-2021年期间,

e平台 3.0全面取消了耗能最大的PTC控制模组后,驾驶舱制暖预热交给热泵电动空调系统以及来自“8合1”电驱+电控系统的余热,动力电池低温需求则由热泵电空调支持。

上图为2020年期间比亚迪量产的电动汽车空调系统、电驱动循环系统和动力电池热管理系统的结构简图。2021年比亚迪推出的e平台 3.0整车解决方案,首要做的是高度集成电驱动系统、高压用电系统以及全部控制系统。其次要做的是将复杂的循环系统进行硬件层面的整合,并在控制策略上融入到整车控制层面。

笔者有话说:

无论“8合1”电驱+电控,还是一体化的热管理控制技术,都凸显了比亚迪在电动汽车发展方向所坚持的高度整合与降低能耗的策略。当然,e平台 3.0架构下一体化热管理控制系统的实际表现与效能,还要结合整车实际状态为准。

新能源情报分析网评测组出品

牛在哪?比亚迪e平台3.0技术解析

很多人只知道比亚迪卖的好,技术家底厚,三电技术牛,但要说哪里牛?多数人说不出个123来。

所以,今天笔者系统性的解析比亚迪技术内核——e平台3.0。读懂了它,就知道为啥比亚迪厉害了。

e平台3.0是比亚迪的核心武器。包括海豹、海豚等车型都是基于e平台3.0打造的,它也将成为比亚迪下一代纯电动车型的摇篮。

近日,比亚迪在北京举行“e 启聊聊 CTB”e平台3.0分享沙龙,以纯干货分享的形式展示了CTB、e平台3.0、刀片电池等核心技术,让消费者能更清楚地知道买比亚迪的新能源产品为什么可以放心。

e平台3.0有多重要,笔者梳理了如下几点

1、这是比亚迪历时5年研发出来的最新成果

2、研发过程耗资百亿

3、e平台3.0从底盘层、高压层、低压层、车身层都进行了大幅升级

e平台3.0架构向域升级

e平台2.0升级到3.0的一个重要特征是,智能化的升级。

过去,比亚迪车型是分布式电子电气架构,它的缺点是算力小、效率低、协同难。

那怎么办?这就需要升级架构。e平台3.0已经向域控制演进。

比亚迪怎么做的?例如在智能车控域,它把空调控制、胎压监测、仪表控制、驻车辅助、智能钥匙等多个模块,多达32个分布式ECU(电子控制单元)功能,进行集成化。

这样做的好处是什么?简单理解就是统一管控,对日后的OTA有很大好处。

从结果看:比亚迪官方介绍,其硬件方面采用由动力、车控、座舱、驾驶组成的域控架构,支持高阶智驾辅助,通过CPU融合,算力提升30%,人机交互效率提升 50%。

软件层面比亚迪推出了BYD OS,这是比亚迪自研的系统。其采用面向服务的软件架构(SOA),对车路云网一体化的未来应用提供了方案和接口,可以充分满足车身电子、底盘控制、动力系统、智能驾驶等多领域的应用。

智能驾驶层面看,e平台3.0预留了各类自动驾驶硬件接口,可灵活配置全球最顶尖的自动驾驶方案;这就是比亚迪可以采用地平线及其他自动驾驶方案的原因。

同时,比亚迪强调充分发挥车辆本身的控制能力,即将路面感知能力和视觉感知能力充分融合,在安全的前提下,提升智能驾驶体验,充分解放双手。

智能座舱:比亚迪同步推进智能生态的建构。为全球开发者提供了基础的硬件调用操作平台,同时软硬件完全解耦。全球开发者可以基于OS的标准接口,调用车辆的执行功能和数据,应用开发速度、迭代速度、用户体验将发生质的飞跃。

半导体上的功力

说完软件,说跟它相关的内容——半导体。

在e平台3.0上,比亚迪还有一项高精尖的核心技术,就是自主研发的高性能SiC芯片。当前,主机厂开始转向800V高压平台,对SiC的需求量越来越大。

SiC具备高频、高效率、耐高温、高功率密度和高可靠性特点,它们比用硅功率晶体管制成的半导体承受更多的热量,具有更长的使用寿命并且更节能,广受新能源汽车大厂欢迎。

IGBT 技术通常为中低档车辆提供更具成本效益的解决方案,SiC则 提供出色的效率和峰值功率,尤其是在较高电压下,适用于非常重视续航里程和性能的车辆,系统成本也更加灵活。每个芯片阻抗更低,可实现出色的效率和热优化。在这些功能的共同作用下,每英里的电池消耗得以降低。虽然 SiC 的成本高于 IGBT,但在许多应用中,这被 SiC 提高的能效所带来的整车其他方面的成本节省所抵消。

当前,高电压是未来大功率充电的主流技术路线,但目前行业普遍都是低压充电桩,性能受限。在e平台2.0上,比亚迪采用独立的升压充电装置提升充电功率。在e平台3.0,比亚迪创新复用驱动系统功率器件组成升压充电拓扑,研发出电驱升压充电技术,使高电压车型充分发挥其快充性能,一举攻克高电压车型充电的难题,同时充分利用国标电流上限,实现宽域恒功率充电,e平台可实现充电15min,续航300km的充电性能。且完全兼容当前所有公共充电桩,这是当下更适合中国消费者的解决方案。

有了高性能SiC芯片后,电动车行业如今竞相争霸的800V高电压策略,以及8合一的集成化控制模块,都将顺利成为现实。前者需要SiC的耐高压高温特性,后者需要SiC体积更小、结构更紧凑的优势。

安全是第一原则

大家在买车时最看重的就是车辆安全性能,尤其是在选购新能源车型时,更是非常关注车辆在发生碰撞后的保护能力。

而比亚迪e平台3.0的这项CTB技术,就以“电池车身一体化”为核心设计理念,将刀片电池与车身集成来实现加强车身环形结构,同时优化电池包边框结构设计,电池上盖、电芯和边框参与整车传力,进一步加固底盘结构,平衡整车重心,使整车强度大幅提高,整车扭转刚度达40000+N.m/°。

懂车的人应该清楚一点,那就是车身在拥有更高扭转刚度的同时,还会带来更高的舒适性与整车操控稳定性,比如海豹车型在麋鹿测试中的通过车速就高达83.5km/h,单移线测试通过车速133km/h,最大横向稳定加速度1.05g,同时借助车身结构的优化带来了更高的轻量化系数,达到行业钢车身顶级水平,比肩钢铝车身。

硬件安全之外,信息安全也同样重要。围绕通信安全、系统安全、接口安全三个方面,e平台3.0全层级的功能安全设计,符合全球功能安全最高等级,杜绝那些因软件“抽风”导致电动汽车失控风险。加之从电芯到整车的多维度电气安全保护,涉及绝缘检测、漏电保护、短路保护、泄压保护等措施,e平台3.0力求做到滴水不漏,保证在碰撞、涉水等极端工况下的整车安全和乘员安全。

大幅提升操控乐趣

从海豹开始,外界发现e平台3.0平台车型在操控以及机械规格上也有非常不错的表现。而它的武器是iTAC。

iTAC的全称是intelligence Torque Adaption Control,由比亚迪自主研发的智能扭矩控制系统,是在比亚迪e平台3.0的基础上开发,后续亦搭载在e平台3.0的高性能车型上。

● iTAC有什么作用?

简单来说,iTAC是一个控制电机扭矩输出的工具。它能根据驾驶员需求,结合车身姿态、车轮状态等信息,动态调整前后轴电机的扭矩分配,从而帮助电动车提升操控稳定性、驾驶安全性。

具体来看:

1、避免轮胎打滑:

例如在低附着力的坡道起步时,iTAC系统能够精确控制输出的扭矩,避免扭矩过大而导致车轮打滑;同时,由于在坡道上(以车头指向坡顶的情况为例),后轴受到的载荷更大,后轮有更大的抓地力,该系统会在后轮上分配更大的扭矩,从而提升车辆在坡道上的起步和行驶效率。

2、提高爬坡能力:

当驾驶员突然深踩油门加速时,重心向后转移,前轴载荷减小,后轴载荷增加,系统会在后轮上分配更大的扭矩,提升车辆的提速性能和驱动效率。

3、避免转向不足、转向过度:

如当车辆有转向不足趋势时,该系统会适当减小前轴扭矩输出,增加后轴扭矩输出,让车辆的弯道特性更趋于中性转向,提升车辆可操控性和安全性;

当车辆有过度转向趋势时,该系统会适当增加前轴扭矩输出,减小后轴扭矩输出,让车辆的弯道特性更趋于中性转向。

4、智能分配前、后轴扭矩:

这就相当于一套纯电动的四驱系统了。对于传统燃油车来说,智能四驱系统已经有很多年的发展历史了,技术上相对成熟。

iTAC在智能扭矩分配方面主要有四种模式,前驱模式、后驱模式、前轴降扭+后轴增扭、前轴增扭+后轴降扭。iTAC会在上述四种模式中智能地选择一种来匹配车辆的行驶工况。

例如在车辆高速巡航时,会采用前驱模式降低电耗,在起步时会采用后驱模式来提升起步效率。在车辆出现转向不足趋势时,前轴降扭+后轴增扭能够抑制转向不足。在车辆出现转向过度时,前轴增扭+后轴降扭能够抑制转向过度。

综合来看,比亚迪研发这套系统的目的,就是让纯电动车辆的安全性、舒适性和操控性得到大幅提升,从而提高整车的驾控乐趣。

电驹小结:

e平台3.0去年发布,今年也才刚刚规模上车。其技术含量与前瞻意义都是巨大的,可能在很多消费者看来,更多感受到的是关于三电及安全方面的优势,但事实在后期,e平台3.0还会有更多的惊喜。

 

联系我们


微信手机同号:18038109954
库尔能源制冷片总部:深圳市宝安区西乡街道名优采购中心B座B210。联系电话:18038109954 胡总监 (TEC制冷片厂家) 粤ICP备2024213474号 XML地图 半导体制冷片厂家