半导体制冷片厂家
 
 
行业新闻 制冷技术 公司新闻 半导体技术
EV450整车热管理系统;整车热管理系统产品
来源:本站 时间:2024-06-29
解析比亚迪秦Pro EV超能版(2驱)整车热管理策略

在过去的8天,从西安经郑州至北京的1200公里旅途中,新能源情报分析网评测组对比亚迪秦Pro EV超能版(2驱)电动汽车进行了深度的测试。

本文仅对适配最大输出功率设定为135千瓦“3合1”驱动电机总成、动力电池装载电量提升至69.5度电,NEDC续航里程达到520公里的秦Pro EV超能版(2驱)的整车(电驱动和动力电池)热管理策略进行解读。

1、比亚迪秦Pro EV超能版(2驱)电驱动系统的持续进化:

此次从西安-北京的近1200公里长测,不仅是要对综合续航里程、充电兼容性进行评测,更要对秦Pro EV超能版(2驱)适配的三电系统进行深度的研判。

上图为秦Pro EV超能版(2驱)的动力舱细节状态特写(拆卸掉中部的防尘罩,保留两侧护板)。适配1组最大输出功率135千瓦的“3合1”驱动电机总成和“3合1”高压用电系统。

上图为秦Pro EV500的动力舱细节状态特写(拆卸掉中部的防尘罩,保留两侧护板)。适配1组最大输出功率120千瓦的“3合1”驱动电机总成和“3合1”高压用电系统。

上图为唐EV四驱版的动力舱细节状态特写(拆卸掉中部的防尘罩,保留两侧护板)。适配2组最大输出功率180千瓦的“3合1”驱动电机总成和“3合1”高压用电系统。

基本上可以确认的是,秦Pro EV超能版(2驱)搭载的135千瓦级“3合1”驱动电机总成(含电机、减速器和电驱动控制系统)为新状态,而“3合1”高压用电系统则来源于唐EV车型(伺服4驱或2驱版)。

至2019年5月,比亚迪乘用车和商用车驱动电机体系列表。

其中,110千瓦级和160千瓦级“2合1”驱动电机总成,适配已停产的e5、秦EV和宋EV车型。40千瓦(后改为45千瓦)级、70千瓦级、120千瓦级和180千瓦级“3合1”驱动电机总成,适配在售e1、元EV、秦Pro EV、宋Pro EV和唐EV车型。

但是,在上述不同级别的驱动电机总成,而未出现135千瓦级驱动电机总成从120千瓦级电机总成“升级”而来的可能最高。然而,秦Pro EV超能版(2驱)超能版换装的唐EV适配的“3合1”高压用电系统总成,旨在升压和为日后试生产的4驱版留下足够的扩展潜力。

上图为秦Pro EV超能版(2驱)动力舱拆除全部防尘罩后的技术状态特写。

红色箭头:最早应用于唐EV(4驱/2驱)版的“3合1”高压用电系统总成(集成OBC\DCDC\PDU)

绿色剪头:伺服135千瓦级“3合1”驱动电机总成和“3合1”高压用电系统总成的冷却循环管路补液壶

黄色箭头:伺服动力电池总成高温散热和低温预热循环管路补液壶

“3合1”驱动电机总成+“3合1”高压用电系统总成串联的散热循环管路补液壶盖,标出内部压力为15kPa。已经停产的秦EV450、宋EV500等车型适配的“4合1”电驱动系统总成与“2合1”驱动电机总成,串联共用的散热循环系统管路压力为130kPa。

很明显,秦Pro EV超能版(2驱)车型适配的电驱动和高压用电系统散热循环管路压力大幅下降。这意味着,秦Pro EV超能版(2驱)电驱动系统的冷却策略进行了精细化,以及换装了具备数据总线控制能力的变频电子水泵。

上图秦Pro EV超能版(2驱)车型动力电池高温散热和低温预热循环管路补液壶,电动空调管路细节特写。

黄色箭头:动力电池高温散热和低温预热循环管路补液壶(标注压力为15kPa)

绿色剪头:固定在防火墙上的空调膨胀阀

白色箭头:压缩机至膨胀阀输送R134a冷却剂的管路

已停产的秦EV450和宋EV500车型适配1组动力电池高温散热循环管路,1组动力电池低温预热循环管路,这2组管路压力为15kPa。

秦Pro EV超能版(2驱)将2组动力电池热管路循环管路,合并为1套。这意味着,管路、接口和“3通”阀体数量大幅减少,系统可靠性有所提升。最重要的是,2组伺服动力电池热管理循环管路变为1组,与可变流量电子水泵配合,最大化的降低动力电池非驱动用电耗,间接提升续航里程。

秦Pro EV超能版(2驱)因为换装了提及更大的“3合1”高压用电系统总成,而挤占更多的空间,使得PTC模块重新布置在靠近BC28系列压缩机的区域(驾驶员一侧)。

显然,秦Pro EV超能版(2驱)适配的135千瓦级“3合1”电驱动系统、移植自唐EV“3合1”高压用电系统,动力电池电量提升至69.5度电,还有具备加装后驱动电机模块扩展超级电四驱系统的能力,已经不能说是1款基于秦Pro EV500的升级版的车型。新的技术状态,意味着整车层面(电驱动热管理和动力电池)热管路策略。

1、比亚迪秦Pro EV超能版(2驱)整车热管理策略:

需要注意的是,以下提及的比亚迪秦Pro EV超能版(2驱)充电方面的数据和信息,为多次充电时获取。

从西安至北京长测的第二天,与郑州段-石家庄段(室外温度23摄氏度)进行快充,SOC至79%,电芯温度从27摄氏度提升至33摄氏度。

秦Pro EV超能版(2驱)动力电池热管理系统达到激活阈值,对电芯进行高温散热伺服。

动力电池充电SOC从79%至96%区间,“动力电池智能恒温系统”并未持续开启,而是间歇性运行。比亚迪的工程师们为秦Pro EV超能版(2驱)“写入”了更智能的动力电池热管理策略,针对私人用车高温散热系统被激活的阈值为33摄氏度。无论充电,还是行车,只要电芯温度达到33摄氏度,即刻开始对电芯进行高温散热。电信温度低于33摄氏度,空调压缩机关机停止经过水冷板对冷却液进行“冷交换”。但是管路内部的冷却液在可变流量水泵的驱动下,以更低的转速和压力,进行自然循环,依旧对电芯进行温度控制。

充电时,秦Pro EV超能版(2驱)的电芯温度达到33摄氏度,动力电池高温散热系统激活,可变流量电子水泵驱动下经过冷却的冷却液对电芯冷却。与此同时,“3合1”驱动电机总成和“3合1”高压用电系统总成,串联的冷却循环系统一同运行,对集成在“3合1”高压用电系统总成内部的OBC(充电机)和升压用IGBT进行强制冷却。

白色箭头:“3合1”驱动电机总成和“3合1”高压用电系统总成共用冷却循环管路补液壶表面温度为41.8摄氏度

从130kPa压力大幅降低至15kPa压力,并保持“3合1”电驱动总成和“3合1”高用电系统总成散热需求,引入可变流量电子水泵至关重要。

红色箭头:伺服电驱动和高压电系统冷却管路的可变流量电子水泵

绿色剪头:从可变流量电子水泵引出的循环管路至“3合1”高压用电系统总成

绿色箭头:可变流量电子水泵实时温度为41.2摄氏度

白色箭头:至“3合1”高压用电系统总成冷却管路表面温度约为37摄氏度

充电时及充电后,这组6疑似电耗为60瓦的可变流量电子水泵依旧运行。

在不同品牌的60千瓦和120千瓦快充桩上进行多次充电,“3合1”驱动电机总成和“3合1”高压用电系统总成共用的循环管路温度稳定保持在40-45摄氏度。充电结束后(车桩分离且不启动车辆),可变流量电子水泵仍然会持续运行一段时间,对“3合1”高压用电系统进行散热伺服。

编号为EWP50可变流量电子水泵,可兼容PWM\LINK\CAM3种总线控制系统,适用12V/24V低压电线路。由比亚迪工程院自行研发和量产,可用于乘用车和商用车,定型时间为2016年6月。

从技术架构上看,秦Pro EV超能版(2驱)疑似适配了2组不同功率的可变流量电子水泵。其中伺服电驱动系统的可变流量电子水泵对可变压力有更大需求(大功率);伺服动力电池热管路系统的可变流量电子水泵对可变流量有更大需求(高精度)。

上图为秦Pro EV超能版(2驱)动力电池低温预热和高温散热循环管路补液壶和空调管路温度状态特写。

红色箭头:动力电池热管理系统循环管路补液壶温度约为27摄氏度

白色箭头:空调压缩机至膨胀阀管路温度为24摄氏度

秦Pro EV超能版(2驱)动力电池高温散热功能开启后,BC28电动压缩机运行并产生冷量,经过水冷板与冷却液进行“冷交换”。制冷后的冷却液被可变流量电子水泵驱动至动力电池内部的全铝偏管对电芯进行散热。原本2组热管理系统散热/高温循环管路,被简化为1组,意味着热管理策略效率的提升,电控空调开/闭控制策略也要进行重新适配。

电信温度超过33摄氏度阈值,电池高温散热功能开启,电动压缩机运行,2组电子扇同时高速旋转,对冷凝器进行强制散热。

动力电池低温预热和高温散热循环管路补液壶内部冷却液,被可变流量电子水泵以大功率驱动时,冷却液呈喷射状态进行循环。

红色箭头:冷却液喷射至补液壶上部

由于适配了可变流量电子水泵,随着电芯温度的变化,可变流量水泵也以不同功率运行,在自然循环、强制循环间“无缝连接”伺服。

3、秦Pro EV超能版(2驱)可否进化为超级电4驱版参加赛事并量产?

黄色箭头:秦Pro EV超能版(2驱)动力舱内“3合1”高压用电系统总成下部的“3合1”电驱动总成

红色箭头:刚性连接的BC28电动压缩机

需要注意的是,由120千瓦级“3合1”驱动电机总成,升级而来“135千瓦级3合1”驱动电机总成粘贴了一张十分特别,又很正常的标签。

HADEF-2100010-前驱电动总成

毫无疑问!秦Pro EV超能版(2驱)已经从最基本的架构整车架构和技术层面,具备增加后驱电动总成的可能和能力。

用于唐EV的“3合1”高压用电系统总成,不仅用于更高效的充电效率,也具备对增加1组135千瓦级或180千瓦级“3合1”后驱动电机总成控制能力。更重要的是,2019年量产的秦Pro EV超能版(2驱),为比亚迪3年前的技术状态。

或许在2018年量产的秦Pro EV500,就完成了秦Pro EV超能版的2驱和4驱改型的推出全部技术准备。毕竟基于“e平台”技术的秦Pro\宋Pro和唐EV车系,先天具备2驱/4驱车型的扩展能力。

笔者有话说:

截止2019年5月,比亚迪秦Pro车族,已经完整的涵盖了燃油版、DM版和多个配置的EV版车型。在公布的最新比亚迪秦Pro EV车型价格体系中,针对北京市场全系车型优惠了1万元。

其中,秦Pro EV高功率长续航版也就是前文提及的超能版(2驱)车型,扣除补贴后售价为18.99万元(包括针对北京市场额外优惠的1万元),直接将竞争对手锁定为适配“811”高镍三元锂电池的吉利新能源几何A和广汽新能源AION S。

无论吉利新新能源几何A,还是广汽新能源AION S,都是不具备加装后驱动电机总成的2驱车型。比亚迪秦Pro EV超能版从设计到技术准备,就将4驱车型纳入到规划中。

在笔者看来,单从电驱动技术、整车层面的热管理策略,自行研发并量产的“622”镍钴锰酸锂电池的极限状态的掌控,都具备“拳打特斯拉S”的硬实力。

而从最近频频保持的特斯拉S爆炸事故,特斯拉3的漏水、空调事故看,比亚迪系新能源的安全设定更值得信赖。换句话说,也只有从电芯、模组、电池总成、BMS系统、空调压缩机、可变流量电子水泵、电驱动系统、高压用电系统总成以及全部关键的核心技术,都自行掌握的比亚迪,才可以制造出以技术领先的新能源车。

文/新能源情报分析网宋楠

相关阅读1:宋楠:专业赛道测试比亚迪秦Pro EV500电动汽车

相关阅读2:宋楠:快评比亚迪全新一代唐EV600四驱版商品车技术状态

相关阅读3:宋楠:长城欧拉R1与比亚迪e1电池热管理技术对比(连载30)

相关阅读4:宋楠:深度解析比亚迪秦Pro EV超能版之长途测试篇

宋楠:通过比亚迪宋EV500热成像信号解析电驱动控制技术

在此前,笔者已经连续撰写了多篇关于比亚迪系新能源“三电”系统和动力电池热管理技术的系列稿件。本文为笔者第2次使用某型热红外成像系统,评测电动汽车多种使用模式下的温度热成像温度信号技术解读稿件。

1、为什么要对电动汽车热成像信号研判、分析和整理:

在大多数军用技术装备研发和装备环节,热(辐射)成像信号要尽量降低,或者与作战环境背景靠近。否则,容易被敌方用热成像、红外、微光等侦查手段获取,影响战术突袭达成度。

热成像信号的构成,源于动力、传动、散热以及电子设备使用环节,向外界“热交换”过程产生。通过均衡不同热源的功率,并加以不同配方的涂层抑制热信号发散,可有效降低己方被热侦查手段发现几率。然而在乘用车(家用车)领域热成像信号不会受到特殊手段干预。所以对比亚迪宋EV500多种模式下热成像信号研判,可以更直观的获取其电驱动控制技术状态。

比亚迪全新一代宋EV500补贴后售价为18.99-21.99万元;搭载一台最大功率为160千瓦,最大扭矩为310牛米的永磁同步电动机,适配1套“4合1”电驱动控制总成;搭载的三元锂电池的电池容量为62度电,工况续航400公里;前悬架为框型副车架+麦弗逊式独立架构,后悬架为副车架+铝合金材质多连杆架构。

2、比亚迪宋EV500“三电”系统和动力电池热管理策略:

上图为比亚迪全新一代宋EV500动力舱细节特写。

宋EV500搭载的“4合1”电驱动控制系统,为比亚迪研发和制造的适配多款乘用电动汽车、商用电动客车和电动卡车的控制总成。将电机控制器、DCDC、高压集线盒和充电器,原本分散布置的小总成,集成在一起,作为一个“4合1”大总成适配。这种“4合1”电驱动控制系统,有利于降低自重,减少线缆布设、提升散热效率和可靠性。

红色箭头:驱动电机、“4合1”电驱动控制总成共用的循环管路膨胀水壶

黄色箭头:动力电池低温预热系统和驾驶舱空调(制热)系统,共用的循环管路膨胀水壶

绿色箭头:动力电池高温散热系统和驾驶舱空调(制冷)系统,共用的循环管路膨胀水壶(被塑料护板遮蔽)

需要特别注意的是,比亚迪全新一代宋EV500电动汽车适配的最大输出功率160千瓦的驱动电机、“4合1”电驱动控制总成,也是秦EV300,秦EV450等车型共用。在过去的秦EV300和e5 300电动汽车基础上,在此对动力电池热管理系统进行了改进,使得宋EV500的动力电池热管理系统的制冷和制热系统的液态管路,由此前的共用1套,进化为单独各1套。

因此,这种独立的2组动力电池液态高温散热和低温预热系统(热管理),可以更精确的对动力电池的温度进行精准控制,并有利于提升动力电池驱动用电量比例,间接的提升续航里程。

上图为秦EV450电动汽车动力舱细节特写。

红色箭头:“4合1”电驱动控制总成

蓝色箭头:驱动电机、“4合1”电驱动控制总成共用的循环管路膨胀水壶

白色箭头:动力电池低温预热系统和驾驶舱空调(制热)系统,共用的循环管路膨胀水壶

黄色箭头:动力电池高温散热系统和驾驶舱空调(制冷)系统,共用的循环管路膨胀水壶

宋EV500的电驱动系统和动力电池热管理系统(硬件),在秦EV450基础上升级而来。

2、比亚迪宋EV500开启制热空调热成像信号:

在未开启空调制热模式行驶20公里后,笔者首先测试宋EV500的热成像信号。

上图为未开启制热空调的宋EV500被热成像仪扫描后,温度波普特写。

蓝色地表、背景、前机盖以及部分前格栅为低温区域,最低温度6.7摄氏度。

红色十字所致的是测温区内最高温度的右前轮,最高温度22.1摄氏度。

红色+白色区域为驾驶舱的最高峰值温度23.8摄氏度。

制热空调开启,内循环、出风模式为除雾+向下,温度调节至26摄氏度,风量1挡。

上图为宋EV500的空调制热模式开启并运行1分钟后,再次进行热成像扫描后的热辐射信号特写。

因为之前的行驶,轮胎和轮毂依旧温度达到约20摄氏度(红色区域)。前机盖以及后部环境区域温度处于较低状态,约6.2-10摄氏度。因为动力电池低温预热和空调制热散热循环管路及膨胀水壶位于动力舱内,启动后温度随之提升,导致前保险杠及前机盖靠近防火墙(风挡玻璃)区域的温度快速提升至15摄氏度左右。

驾驶舱内的文图提升显著,达到24.4摄氏度,甚至靠近出风口的最高温度为32.6摄氏度(白色区域)。

空调制热模式运行2分钟后,动力舱外的进气格栅为6.2摄氏度(最低温度)。动力舱内的“4合1”电驱动总成外壳温度较为均衡的提升至15-18摄氏度。动力电池低温预热和空调制热系统共用散热循环管路膨胀水壶的温度,达到最高点的68.1摄氏度。

空调制热模式运行3分钟后,动力电池低温预热和空调制热系统共用散热循环管路膨胀水壶的温度,达到75.1摄氏度。

空调制热模式运行4分钟后,动力电池低温预热和空调制热系统共用散热循环管路膨胀水壶的温度,降至70.9摄氏度。

空调制热模式运行5-7分钟后,动力电池低温预热和空调制热系统共用散热循环管路膨胀水壶的温度,降至40摄氏度。此时,驾驶舱内温度稳定在标定的26摄氏度后。

上图为动力电池低温预热和空调制热系统共用散热循环管路,膨胀水壶内的冷却液沸腾的特写。

在笔者记录宋EV500的空调制热模式开启后,动力电池低温预热和空调制热系统共用的散热系统立即启动,PTC加热器开始对循环管路内的冷却液进行了加温,并在3分钟达到PTC控制模块自动判定的最高需求温度75.1摄氏度。随着驾驶舱内达到预设的26摄氏度后,循环管路内的温度随即进行降低,并在PTC控制模块“作用”下,自动调节输出功率并停止或启动电子水泵(开闭循环系统),已达到满足驾驶舱恒温26摄氏度的同时,提升动力电池非行驶工况分配电量的使用效率。

需要注意的是,在笔者10月份测试秦EV450电动汽车发现,高速行驶2小时后随即进行快充,动力电池高温散热和空调制冷系统共用的散热系统就会即可开启,以保证电芯温度适中处于25-33摄氏度。

就在快充过程,随着动力电池(电芯)内部温度的攀升,秦EV450的动力电池液态热管理系统自行开启进行散热。

黄色箭头:动力电池高温散热和空调制冷系统共用的循环管路膨补液壶内的冷却液处于静止状态

红色箭头:动力电池液态循环管路补液壶内冷却液开始循环流动,温度提升至33摄氏度

3、比亚迪宋EV500快充模式热成像信号:

仍然是行驶50公里后,宋EV500使用国家电网建设的60千瓦充电桩快速充电。

电池剩余电量60%时,充电电流92安;电池剩余电量82%时,充电电流49安;此时电芯温度从25摄氏度提升至29摄氏度。

上图为宋EV500快充10分钟后,整车热成像信号状态特写。

白色箭头:温度处于最低区域的前机盖和驾驶舱(前风挡玻璃),5.2摄氏度

十字箭头:温度最高区域的前车轮,22.3摄氏度

红色箭头:60千瓦快充桩顶端峰值温度达到29.1摄氏度

上图为快充10分钟,宋EV500动力舱内的“4合1”电驱动控制总成热成像波普特写。

白色箭头:驱动电机和“4合1”电驱动控制总成共用的循环管路膨胀水壶温度约为13摄氏度

黄色箭头:“4合1”电驱动控制总成内充电机部分的温度约为20摄氏度

十字箭头:测试区域内(白色框架)最高温度点(25.5摄氏度)

红色箭头:瞬时最高温度点,动力电池低温预热和空调制热系统共用的循环管路膨胀水壶(25.5摄氏度)

在快充的全过程(约20分钟),宋EV500的动力电池电芯温度处于25-29摄氏度,动力电池低温预热和空调制热系统并未开启(循环管路内冷却液并为流动且沸腾)。

4、比亚迪宋EV500静置一晚热成像信号:

静置一晚后宋EV500整车热辐射信号波动幅度不超过5摄氏度,最低温度7.4摄氏度,最高温度12.2摄氏度,瞬时最高温度区域为背景的住宅楼墙壁镶嵌的空调室外机(14.4摄氏度)。

5、比亚迪宋EV500行驶热成像信号:

未开启驾驶舱空调制热模式,连续驾驶5分钟并动态监测宋EV500热成像信号。在这5分钟连续驾驶环节中,对宋EV500施加急加速、紧急制动,匀速行驶等操控动作。

基本上,宋EV500在做急加速、紧急制动以及匀速行驶等常见工况时,热成像仪显示的温度变化幅度不大(几乎可以忽略)。

来自宋EV500自身散发的热量,明显不如前驱动桥两侧车轮的温度。甚至动力舱盖的表面温度没有超过16摄氏度。由于关闭空调制热模式,驾驶舱内温度处于8摄氏度左右。对宋EV500的侧面进行热成像信号监测时,底部的动力电池热成像信号弱于车侧面折射的温度。

笔者有话说:

对于宋EV500的综合续航里程,在之前笔者撰写的稿件已经介绍的很清楚了,110公里/小时高速匀速行驶,60公里/小时中速匀速行驶、20公里/小时低速拥堵形势,并叠加开启空调制热模式,综合百公里电耗为20度电,续航里程300公里。如果以相同工况关闭空调制热模式,综合百公里电耗为17度电,续航里程364.7公里。

但是,在不同行驶模式下宋EV500的热成像信号变化幅度并不大。尤其,宋EV500适配的3组散热伺服系统(驱动电机+“4合1”电驱动控制总成共用的循环管路;动力电池低温预热和空调制热系统共用的循环管路;动力电池高温散热和空调制冷系统共用的循环管路)以功能为区分根本,性能表现优越。

宋EV500空调制热模式启动同时,与动力电池低温预热系统共用的循环伺服系统即可开启,快速加温至预设温度。当驾驶舱内温度处于恒定状态,PTC加热控制模块对电子水泵进行可变流量控制,降低循环速度并调节加热功率。甚至循环伺服管路停止运行,在舒适性和电池电量分配和续航里程方面的平衡,已获得温度精准控制。

截至目前为止,比亚迪宋EV500以及秦EV450电动汽车,适配的3组循环系统,看似结构复杂,成本较高,但是对温度控制的精准程度,是包括特斯拉、日产聆风以及奥迪e-tron等欧美日大厂制造的同型车型所不具备。

而这种温度控制的策略,也是可以移植到全新一代唐EV、秦Pro EV以及元EV等比亚迪新一代电动汽车。当然,在全新的“3合1”驱动电机系统、“3合1”电驱动系统的加持下,将动力电池低温预热和空调制热、动力电池高温散热和空调制冷2套循环系统结合后,依旧具备温度控制的精准能力。

而对温度的精准控制,将是更多新能源车制造厂,提升电驱动效率,在不增加电池电量前提下,稳定甚至提升续航里程的重要手段之一。

宋EV500的电驱动系统以及动力电池热管理系统的精准设定,仅是比亚迪在新能源核心技术潜心研发的一个表现。

同样是EV,一些同为450公里级别电动汽车的冬天续航“缩水”严重,而宋EV500在技术加持下续航更靠谱,能有效消除北方冬季低温地区用户在续航折扣上的担忧。不用担心户外停车,经过一夜风寒后“精神不振”。

阅读延伸:

自重2.05吨的比亚迪宋EV500,适配62度电电池,高速综合续航里程衰减较少的根本原因是电驱动系统高度集成,并且拥有分工明确的伺服动力电池和空调加热以及制冷功能设定,2套散热伺服系统和1套驱动电机与“4合1”电驱动控制模块循环伺服系统。这就意味着,宋EV500在高温或低温环境下,保证驾车舒适性同时,又可以精准控制温度,以平衡动力电池电量驱动用和功能供电量分配比例。

自重2.6吨的蔚来ES8适配70度电电池,高低速综合续航里程衰减严重的根本原因是电驱动系统集成度糟糕。更需要注意的是,在即将到来的冬季,ES8开启更耗电的空调制热模式后的综合路况续航里程的衰减,将会更加严重。

文/新能源情报分析网(换个角度看车市)宋楠

 

联系我们


微信手机同号:18038109954
库尔能源制冷片总部:深圳市宝安区西乡街道名优采购中心B座B210。联系电话:18038109954 胡总监 (TEC制冷片厂家) 粤ICP备2024213474号 XML地图 半导体制冷片厂家